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Preface

In recent years, numerous new algorithms for dealing with rings of differential
operators have been discovered and implemented. A main tool is the theory
of Grobner bases, which is reexamined in this book from the point of view
of geometric deformations. Perturbation techniques have a long tradition in
analysis; Grobner deformations of left ideals in the Weyl algebra are the
algebraic analogue to classical perturbation techniques.

The algorithmic methods introduced in this book are aimed at studying
the systems of multidimensional hypergeometric partial differential equations
introduced by Gel’fand, Kapranov and Zelevinsky. The Grobner deformation
of these GKZ hypergeometric systems reduces problems concerning hyper-
geometric functions to questions about commutative monomial ideals, and
thus leads to an unexpected interplay between analysis and combinatorics.

This book contains original research results on holonomic systems and
hypergeometric functions, and it raises many open problems for future re-
search in this rapidly growing area of computational mathematics. An effort
has been made to give a presentation which is both accessible to beginning
graduate students and attractive to researchers in a variety of mathematical
disciplines. The intended audience consists of anyone who is interested in
algorithmic mathematics or in mathematical algorithms.

This book project started when the three of us met in Sapporo in August
1997. We had gotten together to work on a joint research paper on topics
now contained in Chapter 4. We suddenly realized that we needed more
background, almost none of which we could find in the existing literature
on D-modules and linear partial differential equations. We then started to
develop all the necessary basic material from scratch, and our manuscript
soon turned from a draft for a research paper into a draft for a book.

We are grateful to two institutes whose support has been crucial: the
Research Institute for Mathematical Sciences (RIMS) at Kyoto University
hosted Bernd Sturmfels during the academic year 1997/98, and the Math-
ematical Sciences Research Institute (MSRI) at Berkeley hosted Nobuki
Takayama during the academic year 1998/99. Mutsumi Saito visited his coau-
thors several times for short periods at both institutes. Bernd Sturmfels also
acknowledges partial support from the U.S. National Science Foundation.



VI Preface

We wish to thank our friends for providing comments on earlier drafts of
this book. An especially big “thank you” goes to Alicia Dickenstein, Diane
Maclagan, Laura Matusevich, Greg Smith, Harrison Tsai, and Uli Walther.

This book is dedicated to our respective families, whose encouragement
and support for this enterprise has been invaluable.

June 1999 Mutsumi Saito, Bernd Sturmfels, Nobuki Takayama
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1. Basic Notions

This book provides symbolic algorithms for constructing holomorphic so-
lutions to systems of linear partial differential equations with polynomial
coefficients. Such a system is represented by a left ideal I in the Weyl algebra

D = C(xl,...,xn,é‘l,...,é)n).

By a Grobner deformation of the left ideal I we mean an initial ideal
in(_y,w)(I) C D with respect to some generic weight vector w = (w1, ..., wy)
with real coordinates w;. Here the variable z; has the weight —w;, and the
operator 0; has the weight w;, so as to respect the product rule of calculus:

81--:::1- = J,‘i'ai‘l-l.

Using techniques from computational commutative algebra, one can deter-
mine an explicit solution basis for the Grébner deformation in(_y,.,)(I). The
issue is to extend it to a solution basis of I. This problem is solved in Chapter
2 under the natural hypothesis that the given D-ideal I is regular holonomic.
This hypothesis is valid for the D-ideals representing hypergeometric integrals,
whose asymptotic expansions are constructed algorithmically in Chapter 5.
Our main interest lies in the systems of hypergeometric differential equa-
tions introduced by Gel’fand, Kapranov and Zelevinsky in the 1980’s. Here
is a simple, but important, example of a hypergeometric system for n = 3:

I = D- {8183—8%, 2101 + T20s + 1303, 209 + 22303 — 1}
If w = (1,0,0) then the Grébner deformation of these equations equals
in(_wyw) (I) = D- { 0103, 101 + 1202 + 1303, 202 + 22303 — 1 }

It is quite easy to see that the space of solutions to in(_, .)(I) is spanned
by x2/x1 and x3/x2. Starting from these two Laurent monomials as w-lowest
terms, our algorithm to be presented in Section 2.6 constructs two linearly
independent Laurent series solutions to the original system I, namely,

_ﬂi(ﬂ_i 1 <2m>x§"gy§n+1) _ —xgﬂ:\/x%—lll’ll‘g.
m+1

2.’E1 2{E1 m x§m+l 2371

m=0
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This is the familiar quadratic formula for expressing the two zeros of a
quadratic polynomial p(z) = z12% + T2z + x3 in terms of its three coeffi-
cients. It is an amusing challenge to write down the analogous hypergeometric
differential equations which annihilate the five roots of the general quintic

q(z) = 212° +202* + 2323 + 2427 + 252 + 6.

In this chapter we introduce the topics covered in this book. After treating
Grobner basics in the Weyl algebra, we review the classical Gauss hypergeo-
metric function and how it is expressed in the Gel’fand-Kapranov-Zelevinsky
(GKZ) scheme. Section 1.4 gives an introduction to holonomic systems of dif-
ferential equations from the Grobner basis point of view, and in Section 1.5
we study a special family of GKZ hypergeometric functions, namely, those
which arise by integrating products of linear forms with generic coefficients.

1.1 Grobner Bases in the Weyl Algebra

Let k be a field of characteristic zero, typically a subfield of the complex
numbers C. The Weyl algebra of dimension n is the free associative k-algebra

Dn = k<$1,...,$n,61,...,8n>

modulo the commutation rules
TiTj = TjTy, 8i8j = 8j8i, 8i:cj = CI}jaL‘ fori 75 j, and Bia:i = .'L’iai + 1.

If no confusion arises we simply drop the dimension index and write D for
D,,. The Weyl algebra is isomorphic to the ring of differential operators on
affine n-space k™. This is proved, for instance, in Coutinho’s excellent text
book on the Weyl algebra [26, Theorem 2.3, p.23]. The natural action of the
Weyl algebra D on polynomials f € k[z1,...,z,] is as follows:

_of
_8xi’

O;e f zio f=u;f. (1.1)
Since k[x1,...,Ty,] is also a subring of Weyl algebra D, the symbol e helps
distinguish the action (1.1) from the product - : D x D — D. For instance,

02 ezt = 1222 but 8?2t = 2167 + 8230 + 1223
1T 1 1% 1

The Weyl algebra D acts by the same rule (1.1) on many k[z1,...,z,]-
modules F, including formal power series F = k[[z1,...,,]], or, if k C C,
holomorphic functions F = O**(U) on an open subset U of C™.

A system of linear differential equations with polynomial coefficients can
be identified with a left ideal in D. Suppose that we are given a system of
linear differential equations for an unknown function u = u(z1,...,Zxs),
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Lieu=0, ...,L,eu=0, L; € D.

Then, the unknown function u also satisfies the differential equation

i(ciLz) oy =
=1

for any elements c; in D. This implies that the system of differential equations
may be expressed as
Leu=0, Lel

where I is the left ideal in D generated by L, ..., L. This point of view
enables us to study differential equations through Grébner bases for left ideals
in the Weyl algebra.

Any element p of D has a unique normally ordered expression

p = Z Cap - % (1.2)

(o,B)EE
where 2 = 28 - 22~ 98 = 9" ... 9P cop € k* = k\{0}, and E is a finite
subset of N2". Here, N = {0,1,2,...}. In other words, we have the following

natural k-vector space isomorphism between the commutative polynomial
ring in 2n variables and the Weyl algebra:

U K[z, €] = K[z1,..., 20,61, &) — D, %P s 220°. (1.3)

When doing calculations in the Weyl algebra — by hand or by computer —
the isomorphism ¥ provides a useful representation of the elements. Efficient
multiplication in D can be accomplished by the following Leibnitz formula:

Theorem 1.1.1. For any two polynomials f and g in k|z, &] we have

1 okf ok
e(f) () = > mw<a—§{:a—aj)

E1yeoskn >0

Proof. Both the left hand side and the right hand side are k-bilinear, so
we may assume that f and g are monomials, say, f = x*¢? and g = V€.
Clearly, we can factor out z* and £€° on both sides, so we may assume f = £
and g = 7. Both sides of the desired equation can be written as a product,

n

8. ‘ . 1. okl oFa):
Heeheem) = T35 ( o k)

i=1

Hence it suffices to prove the case n = 1, which amounts to the formula

min{i,j} . . .
oigd — Z i(i—1)---(i—k+1)j(j—=1)--- (—k+1) PRE (1.4)
P k!

This formula can be derived from dx = xd + 1 by induction on ¢ and j. O
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One remark on formula (1.4): throughout this book we freely use the
convention that z abbreviates z; and & abbreviates d; in the case n = 1.

A real vector (u,v) = (u1,...,Un,V1,...,Vn) € R?" is called a weight
vector (for the Weyl algebra) if

u; +v; >0 for 1=1,2,...,n.

Here u; is the weight of the generator z;, and v; is the weight of the generator
;. This condition will always be assumed in this book. The associated graded
7ing gr(, . (D) of the Weyl algebra D with respect to a weight vector (u,v)
is the k-algebra generated by

{l’l,...,fbn} U {61 : ui—l—vi:O} U {61 D Uu; +U; >0}

with all variables commuting with each other except for d;z; = z;0; + 1. In
fact, when u;,v; are integers, gr(, ,)(D) is the associated graded ring of D
with respect to the filtration --- C Fy C Fy C --- defined by

F, = Z Co 5.7:0‘8/3

ua+vpB<m
The two extreme cases of this definition are

gy (D) = k[z,&] if each coordinate of u + v is positive;
gy (D)= D if u + v is the zero vector.

For a non-zero element p in the Weyl algebra D we define the initial form
in(y,v)(p) of p with respect to (u,v) as follows. Let m = max(q, pee(autpuv),
select the terms of maximum weight m in the normally ordered expression
(1.2), and then replace 8; by & for all i with u; + v; > 0. In symbols,

n(y,v) (p) = Z Cop H a,gﬂz H xalaﬂz €  Bl(yw) (D).

(«,8)EE iu, +v,>0 LU,V =

o-utBrv=m

For p = 0, we define in(y ) (p) = 0.
A left ideal I in the Weyl algebra D will be called a D-ideal. The following
result is an important consequence of the Leibnitz formula (Theorem 1.1. 1).

Corollary 1.1.2. Let I be a D-ideal and (u,v) any weight vector. Then the
k-vector space

ingw(l) = k- {inn() | L€ I}

is a left ideal in the associated graded ring gr(u,v)(D).
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Definition 1.1.3. Theideal in(, (1) in gr(, (D) is called the initial ideal
of a D-ideal I with respect to the weight vector (u,v). A finite subset G of
D is a Grobner basis of I with respect to (u,v) if I is generated by G and
in(y,v) () is generated by initial forms in(, )(g) where g runs over G, i.e.,

I'=D-G and ingw(I) = gy (D) - i@ (G), (1.5)

in(u,’u)(G’) = {ln(u,v)(g) Ig € G}

Note that if u +v > 0 then ing, (/) is an ideal in the commutative
polynomial ring k|z,£], while the Grébner basis G is still a subset of the
Weyl algebra D. The following examples will clarify the above definitions.

Ezample 1.1.4. Let n =1, (u,v) = (—1,2), Fy = {30% 20}, and I = DF;.
The singleton G = {9?} is a Grébner basis for I, and the initial ideal equals
ing, ) (I) = (€%). (In this book we use “(...)"” for commutative polynomial
ideals. ) The singleton Fy = {0?—20?} satisfies the second condition of (1.5)
but fails the first, while F; satisfies the first condition but fails the second.
Indeed, a collection of normally ordered monomials is rarely a Grobner basis.

It is our next goal to describe the Buchberger algorithm for computing
Grobner bases in the Weyl algebra. To this end we need to specify a total
order < on the set of normally ordered monomials 9% in D. Such an order
is called a multiplicative monomial order if the following two conditions hold:

1. 1 <z;0; for i=1,2,...,n;
2. z29P < 0% implies z+398+t < xa+39%+t for all (s,t) € N2

A multiplicative monomial order < is called a term order (for the Weyl al-
gebra) if 1 = 2°9° is the smallest element of <. A multiplicative monomial
order which is not a term order (sometimes called a non-term order) has infi-
nite strictly decreasing chains but a term order does not (see, e.g., [27, p.70,
Cor.6)). For information on frequently used term orders (lezicographic order,
reverse lexicographic order, elimination order, graded reverse lexicographic
order) see any book on Grobner bases, e.g., [1], [12], [27].

The first condition 1 < x;0; in the above definition is a consequence of
the relation 0;z; = x;0; + 1. Without this assumption the order will not be
compatible with multiplication; i.e. we do not have in.(fg) = in<(f)-in<(g).

Ezample 1.1.5. Let n = 1. Let < be the total order defined by z*9° <
z%0® & B—a <b—aor (—a =b—a and a > a). This is not a multiplicative
monomial order and it is not compatible with the multiplication. For instance,
20 < 1, and the initial term of 8- 20 = zd* + d with respect to the order < is
equal to - 1. (In this book, the underline __ will be used to mark the initial
term with respect to a given order or the initial form for a given weight.)
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Fix a multiplicative monomial order <. The initial monomial in«(p) of an
element p € D is the commutative monomial ¢ in k[, £] such that 2*9°
is the <-largest normally ordered monomial in the expansion (1.2) of p. For
a finite set F in D, we define inL(F) = {in<(f)| f € F }. For a D-ideal I we
define the initial ideal in4(I) to be the monomial ideal in k[z,§] generated
by {in<(p)|p € I}. A finite subset G of D is said to be a Grobner basis of
I with respect to < if I is generated by G and in.(I) is generated by the
(commutative) monomials in<(g) where g runs over G.

The definitions in the previous paragraph extend naturally to elements
and ideals in the associated graded rings gr(, ,(D). In particular, we shall
make frequent use of ordinary commutative Grobner bases in k[z, ] with
respect to term orders <. This will be relevant for part 2 in the next theorem.

As it now stands, there are two notions of Grébner bases in D, one for
weight vectors and one for multiplicative monomial orders. Theorem 1.1.6
will relate these two. Let (u,v) € R*™ be a weight vector, and let < be any
term order. Then we define a multiplicative monomial order <, . as follows:

9P = (u,v) 2°0° & au + fv < au + bv or
(o + Bv = au + bv and z°9° < 2°8).

Note that < ) is a term order if and only if (u, v) is a non-negative vector.

Theorem 1.1.6. Let I be a D-ideal, (u,v) € R*™ any weight vector, < any
term order, and G a Grobner basis for I with respect to <(y ). Then

(1) the set G is a Grébner basis for I with respect to (u,v), and
(2) the set ing, .\ (G) is a Grobner basis for in(, ,)(I) with respect to <.

Proof. Suppose that G is not a Grobner basis for I with respect to (u,v).
Then there exists an element f € I whose initial form in(, ,)(f) is not in the
left ideal generated by in, ,)(G). Since < is a term order, and thus has no
infinite descending chains, we may further assume that the initial monomial

in< (in(u,v) (f)) = in<(u,u) (f) € k[.’l,‘, 5] (16)

is minimal with respect to < among all elements f with this property. By our
assumption there exists g € G such that in. (g) divides (1.6). We can
choose ¢ € k* and a, 8 € N” such that f’ := f—cx®9”-g has = (u,v)-leading
monomial <-smaller than (1.6). This implies that ingy ) (f) = ing,.)(f) —
c- in(u’v)(xaaﬁ - g) is not in the left ideal generated by in(, .)(G). This is a
contradiction to the <-minimality of (1.6). Part 1 is proved.

For the proof of part 2 we consider an arbitrary (u,v)-homogeneous
element h € ing,,)(I). By Corollary 1.1.2 there exists f € I such that
h = ing, 4)(f). Formula (1.6) shows that in<(h) lies in the monomial ideal
generated by in<, (G ). Moreover, since < is a term order, we may conclude
(for instance, by Theorem 1.1.7 below) that in(,,)(G) actually generates
in(y,v)(I) as a left ideal in gr(, (D). O
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Theorem 1.1.6 reduces the problem of computing Grobner bases with
respect to weight vectors (u,v) to the problem of computing Grébner bases
with respect to multiplicative monomial orders. We will divide our discussion
of that problem in two steps. First we study the case where < is a term order,
and next we introduce the homogenized Weyl algebra to solve the case where
~< is a non-term order. The former will be carried out in this section and
the latter in the next section. The latter case includes the most interesting
orders <(_, ) which arise geometrically from the action of the algebraic
torus (k*)™ on the Weyl algebra (see Section 2.3).

Theorem 1.1.7. Let < be a term order and G a Grébner basis for its D-
ideal I = D - G with respect to <. Any element f in I admits a standard
representation in terms of G: there exist ci,...,cm € D that satisfy

f= Zngj, where g; € G and inZ(c;g;) = inL(f) for allj.
j=1

This implies that the first condition in (1.5) can be weakened to G C I if
we assume (u,v) > 0.

The proof of Theorem 1.1.7 is analogous to the familiar commutative case
(see, e.g., [1], [12], [27], [32]). What we must do here, however, is to carefully
define S-pairs and present the normal form algorithm in the Weyl algebra D.
We fix a multiplicative monomial order <. For two normally ordered elements

f= faﬁxaaﬂ + lower order terms with respect to <,

g = gapz®8° + lower order terms with respect to <
in D, we define the S-pair of f and g by
sp(f,9) = @07~ (fap/gar)e” 0" g

where o = max(a;,a;) — o, 8, = max(83;,b;) — 3, a; = max(ay,a;) — a;,
b, = max(f;,b;) — b;. The multipliers for f and g are chosen to cancel the
initial monomials of f and g. Note that we have used the condition z;0; > 1
to cancel the initial terms. We say that z9” is divisible by £28° if a; > a;
and 3; > b; for all 4.

Let us introduce a normal form algorithm in D:

normalForm_ (£, {g1,..-,9m}) =

r:=7f
while (in<(r) is divisible by an in-(g;)) {
r = sp(r, g;) (1.7)

}
ri=ing(r)._,

+normalForm (r — in<(7)(._,, {91, -+, 9m}) (1.8)
return(r)
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Here inL(r)|,_, means ¥(in<(r)), with ¥ as defined in (1.3). Note that we
use a recursive call at (1.8). It is used for presenting the algorithm compactly
and has no deep meaning. The output f’ of this algorithm is a normal form
of f by G = {g1,---,9m}- The normal form algorithm is also called a division
algorithm. When < is a term order, this normal form algorithm terminates.
The normal form is not always unique for general G, but when G is a Grobner
basis with respect to a term order <, the normal form is unique. In particular,
the normal form of f € I is 0 by any Grobner basis G of 1.

Ezample 1.1.8. We present two examples of the computation of normal forms
to clarify our definitions. Put G' = {g1,92}, g1 = (20 — 2)(20 — 4) = 220* —
520 + 8, gy = (20 — 1)0% = £0* — 9* and let < be the lexicographic order so
that < 8. Then, for example, we have

normalForm_ (z26°, {g1,92}) = 0

and
normalForm_ (8% + z28%, {g1,92}) = 8* + 520 — 8.

In fact, we have

z28°
— | 220° |- 8%gy = —20* + O°

——>(+83)—|—92=O

and
8 + 2%0?
— (8 +|220P]) — g1 = 0 + 520 - 8.

Here, we marked by the boxes [ -] terms that will be reduced. Note that our
normal form algorithm reduces lower order terms that are reducible.

Proof (of Theorem 1.1.7). We apply the normal form algorithm to f and G.
Suppose f # 0. Since fo := f € I and G is a Grébner basis, there exists g;, in
G such that inL (f) is divisible by in(g;,). Put fi :=sp(f, 9s,) = fo—magi,-
Then, we have f; € I, ing(f1) < in<(fo), and in<(m1g;,) = in(fo). We can
repeat this procedure and obtain a sequence f; := f;_1 —m;g;,. Since < is a
term order, this procedure terminates; there exists J such that f; = 0. The
sum of these m;g;, gives a standard representation. a

Under our definitions of term orders, S-pairs, and the normal form algo-
rithm, the Grobner basis can be obtained in an analogous way to the com-
mutative case. The Buchberger algorithm to obtain a Grébner basis can be
described as follows when < is a term order.
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Algorithm 1.1.9 (Buchberger’s Algorithm in the Weyl algebra)

Input: F = {f1,..., fm}: asubset of D, <: aterm order.
Output: G : A Grobner basis for D - F' with respect to <.

pair := {(fi, f;) |1 <i<j<m}

G.=F
while (pair # 0) {
Take any element (f, f') from the set pair. (1.9)
pair = pair \ {(/, )}
h:=sp(f, ')
r := normalForm« (h, G) (1.10)
if (r#£0){
pair := pairU {(g,7) | g € G}
G:=GU{r}
}
}
return(QG)

Theorem 1.1.10. Let F = {f1,..., fm} be a finite subset of D. Assume
that < is a term order.

(1) (S-pair criterion) The set F' is a Grébner basis of [ = D - F with respect
to < if and only if for all pairs © # j, the normal form of the S-pair
sp(fi, fj) by F is zero.

(2) The Buchberger algorithm terminates and outputs a Grobner basis of I
with respect to <.

The proof is analogous to the commutative case. See, e.g., [1, p.40, The-
orem 1.7.4], [12, p.211, Theorem 5.48], [27, p.82, Theorem 6].

Ezample 1.1.11. For n = 1, consider I = D -{9% z0— 1}. Let < be any term
order. Then, G = {8%, 20 — 1} is a Grébner basis, because

sp(0%,20 — 1) = 20° — d(xd — 1) = 0% — (28 +1)0 + 9 = 0.

Figure 1.1 pictures the monomials z2€% which are divisible by an element of
inL(G). The monomials z°£% which do not lie in in(7), or their ¥-preimages
z¢0%, are called the standard monomials of in4(I). In other words, a mono-
mial 2¢¢¢ which is not divisible by any element of inL(G) is a standard
monomial. The standard monomials are the lattice points in the first orthant
which are not dotted.



